**P3.14-2)** Car A is traveling along a straight road with a speed of 20 m/s increasing at a rate of 8 m/s<sup>2</sup> when it sees car B attempting to merge. Car B is traveling with constant speed 10 m/s around a curve with radius 20 m. What velocity and acceleration does car B appear to have to the driver of car A at the instant when  $\theta = 40$  degrees?

| $\mathbf{C}$ | ivon  | , |
|--------------|-------|---|
| ١,٦          | IVEII |   |



|                                                    | P3.14-2                                                |
|----------------------------------------------------|--------------------------------------------------------|
| <u>Find:</u>                                       |                                                        |
| Solution:                                          |                                                        |
| Write the car velocities in vector form.           | Write the car accelerations in vector form.            |
| $\mathbf{v}_A = \underline{\hspace{1cm}}$          | $\mathbf{a}_A = \underline{\hspace{1cm}}$              |
| $\mathbf{v}_B = \underline{\hspace{1cm}}$          |                                                        |
| Determine the velocity of car B relative to car A. |                                                        |
|                                                    | $\mathbf{a}_B = \underline{\hspace{1cm}}$              |
|                                                    | Determine the acceleration of car B relative to car A. |
|                                                    |                                                        |
|                                                    |                                                        |
|                                                    |                                                        |
|                                                    |                                                        |
|                                                    |                                                        |
| $\mathbf{v}_{B/A} = \underline{\hspace{1cm}}$      | 2                                                      |